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Magnetic Moment of the Neutron

1 Introduction

1.1 Neutrons in magnetic fields: Larmor precession

The motion of a free propagating neutron, interacting with a magnetic field ~B(~r, t) is
described by a nonrelativistic Schrödinger equation, also referred to as Pauli equation,
given by

ĤΨ(~r, t) =
(
− ~2

2m
~∇2 − µ~σ ~B(~r, t)

)
Ψ(~r, t) = i~

∂

∂t
Ψ(~r, t), (1)

where m and µ are the mass (1.6749 10−27 kg) and the magnetic moment (−1.913µN,
with µN = 5.051 10−27 J/T) of the neutron, respectively. ~σ is the Pauli vector operator.
A solution is found by the two dimensional spinor wave function of the neutron, which is
denoted as

Ψ(~r, t) =

(
Ψ+(~r, t)
Ψ−(~r, t)

)
= φ(~r, t)|S〉, (2)

with spatial wave function φ(~r, t). The state vector for the spin eigenstates denoted as
| ⇑〉 and | ⇓〉 is given by

|S〉 = cos
ϑ

2
| ⇑〉+ eiϕ sin

ϑ

2
| ⇓〉, (3)

introducing polar angle ϑ and azimuthal angle ϕ, which can be represented on a Bloch
sphere or Poincaré sphere, as shown in Fig. 1. Poincaré sphere is usually used for the
representation of light polarization. In the field of general two-level systems (qubits) the
term Bloch sphere is conventionally used.

Figure 1: Bloch sphere description of arbitrary spin - 1
2 state defined by polar angle ϑ and

azimuthal angle ϕ.

The neutron couples via its permanent magnetic dipole moment ~µ to magnetic fields,
which is described by the Hamiltonian Hmag = −~µ · ~B = −µ ~σ · ~B. Magnetic fields of
stationary and/or time dependent origin are utilized for arbitrary spinor rotations in neu-
tron optics. When a neutron enters a stationary magnetic field region (non-adiabatically),
the motion of its polarization vector, defined as the expectation value of the Pauli spin
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Magnetic Moment of the Neutron 1.1 Neutrons in magnetic fields: Larmor precession

Figure 2: (a) Motion of polarization vector in real space: The polarization precedes about
the direction of the external magnetic field, conserving the angle it embraces with the
latter. (b) Bloch sphere description of precession of an arbitrary spin state defined by
polar angle ϑ and azimuthal angle ϕ being transformed.

matrices ~P = 〈S|~σ|S〉 is described by the Bloch-equation, exhibiting Larmor precession:

d~P

dt
= ~P × γ ~B, (4)

where γ is a gyromagnetic ratio given by 2µ/~. This is the equation of motion of a classical
magnetic dipole in a magnetic field, which shows the precession of the polarization vector ~P
about the magnetic field ~B with the Larmor frequency ωL = |2µB/~|. Details of the inter-
action of neutrons with magnetic field are given in http://www.neutroninterferometry.

com/research-overview/neutrons-in-magnetic-fields-larmor-precession. The Lar-
mor precession angle (rotation angle), solely depends on the strength B of the applied
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Figure 3: Direct Current (DC) spin-flipper (a) functional principle (b) Field configura-
tion for highly non-adiabatic transition, required for Larmor precession (c) In practice a
second coils (−z direction), perpendicular to the original coil (x direction) is necessary to
compensate the field component of the guide field (+z direction).
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Magnetic Moment of the Neutron 1.2 Neutron polarimetry

magnetic field and the propagation τ within the field and is given by ωLτ , as shown in
Fig. (2) (a). Larmor precession is often utilized in co called Direct Current (DC) spin-
rotators, or spin-flippers (if the spinor rotation angle is set to 180 deg). The illustrated
field configuration assures a highly non-adiabatic transit required for Larmor precession.
In practice a second coils (−z-direction), perpendicular to the original coil (+x-direction)
is necessary to compensate the field component of the guide field (+z-direction), as illus-
trated in Fig. 3.

An oscillating RF field and a static magnetic field, denoted as (0, B1 cos(ωt+ φ))T , —a
configuration used in nuclear magnetic resonance (NMR)—is also capable of spin flip-
ping. Now we transform into a rotating frame which is rotating exactly at the Larmor
frequency defined by the static field B0, i.e., ωrot = ωL = |γB0|. The field in the rotating
frame is given by (0, B1, B0 + ωrot

γ ))T , where for ωrot = ωL = |γB0| the static field compo-
nent of magnitude B0 is fully suppressed, which is called frequency resonance (the static
component has to vanish, since we transformed into a rotating frame having exactly the
Larmor frequency, a non zero static field would induce an additional Larmor precession
which would conflict with the fact that we transformed into a frame rotating with Lar-

mor frequency ). If, in addition, the amplitude-resonance condition B
(res)
1 = π~

2τ |µ|B0 —
determining the amplitude of the rotating field — is fulfilled, a spin flip occurs.

Figure 4: (right) RF-Flipper consisting of oscillating and perpendicular static magnetic
field, (left) Energy diagramm.

1.2 Neutron polarimetry

A combination of two π/2-pulses (spin rotations) and an applied phase shift is generally
referred to as Ramsey interferometer in NMR and atomic physics. In neutron optics a
similar scheme is usually called polarimeter. A schematic illustration of a polarimeter
is illustrated in Fig. 5 a. The first π/2 rotation creates a coherent superposition of the
orthogonal spin eigenstates, by transforming the initial eigenstate, which is given by |Ψi〉 =
| ⇑〉, according to

Neutronen Praktikum 3



Magnetic Moment of the Neutron 1.2 Neutron polarimetry

|Ψi〉 7−→π/2 |Ψ′〉 = 1/
√

2(| ⇑〉+ | ⇓〉). (5)

Before the second π/2 rotation probes it, a tunable phase shift (for example a static
magnetic field) induces a phase shift φ:

|Ψ′〉 7−→PS |Ψ′′〉 =
1√
2

(
e−iφ/2| ⇑〉+ eiφ/2| ⇓〉

)
≡ 1√

2

(
| ⇑〉+ eiφ| ⇓〉

)
(6)

The probability of finding finally the system in | ⇑〉 (| ⇓〉) is given by P⇑,⇓ = 1/2(1∓cosφ),
which yields the well known sinusoidal intensity oscillations also depicted in Fig. 5 (a).

Neutron polarimetry has several advantages compared to for instance Mach-Zehnder
(perfect crystal) interferometry, such as insensitivity to ambient mechanical and thermal
disturbances, yielding high phase stability.

Figure 5: (a) Ramsey interferometer set-up, consisting of two indistinguishable paths. (b)
Actual neutron polarimetric setup

Neutronen Praktikum 4



Magnetic Moment of the Neutron

2 Experimental Setup

2.1 Source & monochromator

Source

Fission of a 235U nucleus in a nuclear reactor produces on average 2.5 fast neutrons,
with energies around 1 MeV. This is more than needed to uphold the chain reaction.
Therefore neutrons can be removed from the reactor for all kinds of experiments without
disturbing the chain reaction. Since fast neutrons are not able to sustain a chain reaction,
they have to be moderated by collisions with light nuclei of the moderator medium (e.g.
protons in water). After this slowing down process the neutrons are denoted as thermal
neutrons, with energies at about 25 meV, because they are in a thermal equilibrium with
the moderating material. This concept can be used to produce neutrons in a variety of
energies, depending on the temperature of the moderator.

The TRIGA MARK II reactor in Vienna (see Fig. 6) was installed by General Atomics
in 1959, and went critical for the first time on march 7th in 1962. The TRIGA reactor is a
research reactor of swimming-pool type, used for training, research and isotope production
(by general atomics = TRIGA). The TRIGA-reactor is a very common reactor type.
Worldwide there are more than 50 TRIGA reactors in operation.

Figure 6: TRIGA MARK II reactor.

The reactor core consists of some 80 fuel elements that produce a maximum continous
power output of 250 kW thermal. The heat is released via a primary (temperatures be-
tween 20 ◦C and 40 ◦C) and a secondary coolant circuit (temperatures between 12 ◦C
and 18 ◦C). At nominal power the fuel temperature is about 200 ◦C. The fuel elements

Neutronen Praktikum 5



Magnetic Moment of the Neutron 2.1 Source & monochromator

consist of a uniform mixture of 8 wt% uranium, 1 wt% hydrogen and 91 wt% zirconium.
The zirconium-hydride is used as the main moderator. Since zirconium-hydride moder-
ates, due to its negative temperature coefficient of reactivity, with less efficiency at high
temperatures the reactor can be operated in pulse mode. At a pulse the power rises to 250
MW, which leads to an increase in the maximum neutron flux density of 1×1013 cm−2s−1

at 250 kW up to 1× 1016cm−2s−1 but only for 40 milliseconds. The reactor is controlled
by three control rods containing boron carbide as absorber material. When the rods are
fully inserted into the core all neutrons from the start-up source (a Sb-Be photoneutron
source) are absorbed so that the reactor remains uncritical.

Monochromator

The experiment is carried out on the tangential beam tube of the TRIGA Mark II reactor,
schematically depicted in Fig. 7. The out coming neutron beam is monochromatized by
three mosaic crystals made of pyrolitic graphite, selecting the wavelengths 1.7 Å, 2 Å and
2.7 Å, the setup is located at the 1.7 Å beam line (Bragg angle 28.5 ◦). The crystals yield
high integrated reflectivity at low gamma radiation.

beam dump

beamline D

monochromator

reactor core

2.7 A

1.7 A

2.0 A

Figure 7: Tangential beam tube of the TRIGA Mark II reactor with monochromator.
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Magnetic Moment of the Neutron 2.2 Actual polarimeter setup

2.2 Actual polarimeter setup

Polarizer/Analyzer

For understanding the mode of operation of the applied neutron polarizer we have to recap
some basic concepts of neutron optics such as the refraction index. The time dependent
Schrödinger equation ∇2Ψ(~r) + K2Ψ(~r) = 0, with K2 = 2m/~(E − V (~r)) yields n =
K/k =

√
1− V (~r)/E. From the strong (nuclear) interaction of the neutron we have

the Fermi Pseudopotential denoted as Vnuc(~r) =
∑

i 2π~2bc/mδ3(~r − ~ri) ≈ 2π~2bcN/m,
with the coherent scattering length bc and the atom number density N (ri denotes the
position of each scattering center). From the magnetic interaction the contribution is
given by Vmag(~r) = −~µ · ~Beff , with ~µ = µ~σ, where µ is the magnetic moment of the
neutron. So for materials containing Fe, Ni, or Co we have for the index of refraction

N±(~r) =

√
1− (Vnuc(~r)± ~µ · ~Beff)/E. Since Vnuc ∼ Vmag n can become complex, which

accounts for absorption or incoherent scattering. In general, we have n < 1 so the potential
V (~r) is repulsive. For neutrons vacuum (n = 1) is an optically denser medium compared
to most elements !

So neutrons are totally reflected if E⊥ < V . With E⊥ = p2/(2m) = 2π2~2/(mλ⊥) and
λ⊥ = λ/ sin θ we get sin θ < mV λ/(2π2~2) and a critical angle θcrit = arcsin

(
mV λ/

(
2π2~2

))
,

which is depicted in Fig 8 (a). For example Ni has a critical angle of θNi
crit = 0.1 ◦/Å.

Figure 8: (a) neutron total reflection (b) spin-dependent reflection on multilayer structure.
(c) supermirror specifications.

The polarizer and analyzer (spin filter) consists of a multilayer structure of two media
A and B having different coherent scattering length bc(A,B). For an incident angle θ > θcrit

at every single boundary layer there will occur a transmitted an a reflected sub-beam. If
the thickness of the layers is chosen in such way that the partial waves of the reflected sub-
beams have an optical path difference of nλ; constructive interference will be observed.
If the thickness of the layers varies only slightly, from layer to layer, there will be an
appropriate ”lattice constant” for a diversity of wavelengths. If alternating a magnetic
and a non-magnetic medium is utilized, not only the nuclear scattering length, but also
the magnetic scattering length has to be considered (see Fig 8 (b)). This can be used

Neutronen Praktikum 7



Magnetic Moment of the Neutron 2.2 Actual polarimeter setup

for beam polarization, since the sign of the magnetic scattering length depends of the
orientation of the spin towards the magnetization of the medium. If a combination is
chosen such that the sum of the nuclear scattering length and the magnetic scattering
length for one spin component (for instance | ⇓〉) equals the scattering length of the
non-magnetic substance, then this spin component will not be reflected, since there is no
difference in the refractive index of the two layers for this spin component. However, the
other spin component (| ⇑〉) will be (partly) reflected. The transmitted spin component
(| ⇓〉) is absorbed after the last layer. An arrangement as discussed here is referred to as
supermirror, often used as polarizer or analyzer. Supermirrors are characterized by their
critical angle m = θmirror/θNi, which is plotted in Fig 8 (c).

Figure 9: Schematic sketch of the experiment. A uniform guide field B0 · ẑ is applied over
the setup. The incident neutron beam is | + z〉-polarized by the supermirror polarizer.
For a polarimetric measurement of this phase, the DC 1 converts the |z〉 state to |x〉 - a
coherent superposition of the two spin eigenstates. Finally, in order obtain an intensity
oscillation a translation δx of DC2, which projects the local |x〉 component back to |z〉, is
performed.

Magnetic guide field

The entire setup is covered by a uniform guide field in Helmholtz configuration (pointing
in +z-direction) to avoid depolarization during the passage of the setup (and to induce a
Larmor precession to measure the magnetic moment of the neutron).

Neutronen Praktikum 8



Magnetic Moment of the Neutron 2.2 Actual polarimeter setup

DC-coils

DC coils, as explained in Section 1.2, are used to rotate the spin. DC 1, with its field By
is chosen such that it carries out a π/2 rotation around the y axis, generates a coherent
superposition of the two orthogonal spin eigenstates, denoted as |S′〉 = 1/

√
2(| ⇑〉+ | ⇓〉).

Detector

Since neutrons do not carry electrical charge they cannot be detected directly by ionization
of a detector material. Neutrons can only be verified indirectly by measurement of charge,
produced in a preceding nuclear reaction. The common method is to use gas filled
ionization chambers where two electrodes, separated by a counting gas, collect the ion-
pairs produced in a nuclear reaction. In a BF3-detector the 10

5 B nuclide is converted
according to the following reaction

n + 10
5 B→ 11

5 B→ 93%
7%

↗ 7
3Li ∗+4

2He→ 7
3Li +4

2 He + 2, 31 MeV + γ(0, 48 MeV)
↘ 7

3Li +4
2 He + 2, 79 MeV,

where the ionization is caused by the helium nuclei resulting in a detector pulse.
He-detectors use 3He as filling gas, which has the advantage of a 40% higher absorption

cross-section for neutrons. Hence it is possible to construct perspicuous smaller detectors,
which results in better time resolution. The detector reaction is given by

n+ 3He→3H+p+0.764 MeV.

Scintillation counters absorb neutrons in a polymer or glass layer enriched with 6Li
or ZnS, which leads to a fluorescence radiation which is detected by a photo multiplier.
Finally fission chambers use the n+235U reaction for detection of neutrons. Since these
detectors have a low counting probability, they are mainly used for monitoring applications.
The setup used in the Neutronen Praktikum is equipped with a BF3-detector.

Neutronen Praktikum 9



Magnetic Moment of the Neutron 2.3 DC-Coil handling

2.3 DC-Coil handling

The tilt of a DC coil and produced magnetic field the By about the flight direction +x,
can be detected by varying the magnetic field By (current scan) in the coil, which is
depicted in Fig. 10. An intensity oscillation with roughly equal minima and zero offset, i.
e. φ = π/2, should be achieved. After adjusting the coil a symmetric intensity oscillation

(a)                                    (b)

y y

x

y

+

Figure 10: (a) Tilted DC coil (b) By Intensity scan.

with φ ∼ π/2 is observed, as depicted in Fig. 11. Without compensation field, the guide
field, pointing in +z-direction, and the y-component of the coil add up to a field that
cannot become perpendicular to the z-direction and therefore the incident up spin cannot
be inverted from | ⇑〉z to the down stat | ⇓〉z) in the coil (Fig. 10 (a)). Hence a rather low
flipping ratio, defined as R = Imax/Imin, is obtained.

The correct values for the guide field compensation are determined by choosing the
current value that corresponds to one of the minima in the blue fit curve of Fig. 11 (b) for
the y-field. With this y-current set, the current for the compensation field B−z in the coil
is varied.

The minimum intensity current of such a plot of the red curve shown in of Fig. 15 (a) is
set and another y field variation is done, which is plotted in Fig. 15 (b). As a result, the
flipping ratio R = Imax/Imin increases significantly as well as the period of the measured
oscillation. The minimum current from the By-scan, black curve in Fig. 15 (b), is used for

(a)                                     (b)

y y

+x

y

Figure 11: (a) Adjusted DC coil (b) By Intensity scan.
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Magnetic Moment of the Neutron 2.3 DC-Coil handling

(a)                               (b)

- y

Figure 12: (a) Compensation field (B−z) scan (b) By Intensity scan.

the spin flip configuration (π-rotation). For DC 1 (DC 4), which carries out a π/2-rotation,
a quarter of the period of the curve is chosen.

Neutronen Praktikum 11



Magnetic Moment of the Neutron 2.4 Time-Of-Flight (TOF) Measurement

2.4 Time-Of-Flight (TOF) Measurement

Time of flight (TOF) describes a variety of methods that measure the time that it takes
for an (microscopic) object, particle or acoustic, electromagnetic or other wave to travel
a certain distance. This measurement can be used for a time standard (such as an atomic
fountain), or as a way to measure velocity a particle. Since neutrons are continuously

Burst Signal

RF Signal + Deadtime

Neutron Count Rate 

Time Stamp

Ampli!er
(A/D Converter)

DetectorStatic Guide Field

RF Flipper + local Guide Field

Polarizer
Analyzer

Figure 13: TOF-setup.

produced in the core of the reactor a periodic beam interruption has to inserted to have
zero-time, which is synchronized with the detection system. This is usually realized using
a mechanical beam chopper. However in our experiment we use a so called spin-chopper
as schematically illustrated above.

When changing from continouse flipping mode to TOF the following steps have to be
done:

• Change detector im putform counting card to FPGA card

• Connect trigger signal from FPGA card with signal generator (and osci)

• Set signal generator from Continouse to Burst mode

• Change signal generator trigger (Source) from internal to external via
Run Mode / Burst Parameters - MORE .../ Source / External

Neutronen Praktikum 12



Magnetic Moment of the Neutron 2.4 Time-Of-Flight (TOF) Measurement

• Set N-Circles of Burst mode between 10 and 15 (dependent on the chosen frequency
such that half of the timing window is dead time)

Figure 14: TOF-Signal: the neutrons that are between the end of the RF coil and the
detector when the Rf field is switched on are not flipped.

RF-coils

An oscillating RF field and a static magnetic field, denoted as (0, B1 cos(ωt + φ))T , —a
configuration used in nuclear magnetic resonance (NMR)—is also capable of spin flip-
ping. Now we transform into a rotating frame which is rotating exactly at the Larmor
frequency defined by the static field B0, i.e., ωrot = ωL = |γB0|. The field in the rotating
frame is given by (0, B1, B0 + ωrot

γ ))T , where for ωrot = ωL = |γB0| the static field compo-
nent of magnitude B0 is fully suppressed, which is called frequency resonance (the static
component has to vanish, since we transformed into a rotating frame having exactly the
Larmor frequency, a non zero static field would induce an additional Larmor precession
which would conflict with the fact that we transformed into a frame rotating with Lar-

mor frequency). If, in addition, the amplitude-resonance condition B
(res)
1 = π~

2τ |µ|B0 —
determining the amplitude of the rotating field — is fulfilled, a spin flip occurs.

Figure 15: from left to right: i) rotating field, ii+iii) oscillating field, iv) RF spin flipper.

An oscillating RF field can be viewed as two counter-rotating fields. In the frame of one
of the rotating components, the other is rotating at double-frequency and can be neglected
(rotating-wave approximation). A consequence of the rotating-wave approximation is
the so-called Bloch–Siegert shift, which gives rise to a correction term for the frequency

Neutronen Praktikum 13



Magnetic Moment of the Neutron

resonance now reading ωres = − 2|µ|
~(1+B2

1/(16B2
0))

. The above-explained combination of static

and time-dependent magnetic fields is exploited in Radio Frequency (RF) flippers.
See http://www.neutroninterferometry.com/research-overview/neutrons-in-magnetic-fields-larmor-precession#

RF for details or Appendix II: Manipulating a Neutron Spin with a magnetic Field.

3 Experimental Procedure

• adjust DC 1 and DC 2, as explained in Section 2.3, to perform a π-flip: Repeat
By-scans followed by tilting the coil until φ < ±1◦ → Bz - scan → By - scan →
measure the flipping ratio with correct values for By and Bz. Prepare final plots of
intensity vs By and Bz.

• measure the Larmor frequency (periode): DC 1 and DC are set to perform π/2
rotation. Wen the position of DC 2 is varied (using the micrometer screw) an
intensity oscillations occurs due to different Larmor precession angles accumulated
in the static magnetic guide field. Prepare a plot intensity vs. position of DC 2.

• measure the magnitude of the static guide field (using a Hall-probe).

• measure wavelength, more precisely the velocity, of the neutrons using the TOF-
setup (explained in Section 2.4) by changing the position of the detector (using the
micrometer screw) and comparing the time resolved intensity curves.

• calculate the magnetic moment of the neutron.

Neutronen Praktikum 14
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Magnetic Moment of the Neutron

Appendix I: Properties of the Neutron

The neutron was discovered in 1932 by J.CHADWICK, an assistant of RUTHERFORD
in Cambridge, during experiments that could be explained on the assumption that the
incident radiation consisted of neutral particles of the mass of protons. The name results
from the observation that the neutron does not pocess an electric charge. The fundamental
significance of the neutron as part of the nucleus was first understood by W.HEISENBERG
and D.IWANENKO only a short time later. Today, even the neutron’s substructure,
consisting of two down and one up quark (total charge: 2

3e
− + 2(−1

3)e− = 0), is widely
understood.

The neutron is a elementary particle with a mass of m = 1.675.10−27 kg. It decays after
a mean lifetime of τ = 889.1 ± 1.8 s into a proton, an electron and an antineutrino (β−-
decay)

n −→ p+ + e− + v̄e + 0.78 MeV. (7)

The neutron carries a spin of 1
2 which is accompanied by a magnetic dipole moment

µ = −1.913µN (8)

with µN = 5.051 10−27 J/T, where µN is the nuclear magneton.

energy

≤10−5 eV ultra cold
10−5 - 10−3 eV cold
10−3 - 0,5 eV thermal
≥0,5 eV hot

Table 1: Categories of neutrons.

Since the neutron carries no charge it can easily pass through condensed matter, even at
very low energies. Due to this, neutrons are suitably used for radiography, which provides a
very efficient tool for investigations in the field of non-destructive material testing. Despite
the neutron’s vanishing charge it carries a magnetic dipole moment which interacts with
the domain structure of ferromagnetic solids. This method is called neutron depolarization
analysis. It has developed into a powerful technique for investigation of domain structures
of ferromagnetic materials. According to different wavelenght neutrons are separated into
several categories as shown in Tab.(1).

Neutrons are subjected to all four fundamental forces. Since the neutron is part of the
nucleus it is subjected to the nuclear force. The β-instability indicates that the neutron
is also affected by the weak force. The neutron can interact electromagnetically via the
magnetic dipole moment, and finally the finite mass of the neutron is responsible for
interaction based upon gravity.

Neutronen Praktikum 15



Magnetic Moment of the Neutron

Appendix II: Larmor Precession - Neutron’s Spin in a static
magnetic Field

The temporal variation of an operator Â’s expectation value, is given by

d

dt
〈Â〉 =

d

dt
〈ψ|Â|ψ〉 = 〈ψ̇|Â|ψ〉+ 〈ψ| ˙̂

A|ψ〉+ 〈ψ|A|ψ̇〉, (9)

where the dot denotes quantities derived with respect to time. The derivatives of |ψ〉 and
〈ψ| are given by the Schrödinger equation: Ĥ|ψ〉 = i~|ψ̇〉, which gives |ψ̇〉 = 1

i~Ĥ|ψ〉 and

〈ψ̇| = − 1
i~〈ψ|Ĥ. This yields

d

dt
〈Â〉 = − 1

i~
〈ψ|ĤÂ|ψ〉+ 〈ψ| ˙̂

A|ψ〉+
1

i~
〈ψ|ÂĤ|ψ〉 = 〈ψ| ˙̂

A|ψ〉+
1

i~
〈ψ|[Â, Ĥ]|ψ〉, (10)

which can be written as d
dt〈Â〉 = 〈∂Â∂t 〉 + 1

i~〈[Â, Ĥ]〉, resulting in the Heisenberg equa-
tion, which describes the time dependent evolution of an operator’s expectation value.
It tells us that temporal changes in an operator’s expectation value result from an ex-
plicit time dependence of the operator or its commutators with the constituents of the
Hamilton operator of total energy. In reverse, the Heisenberg equation states that for a
conserved quantity, denoted as Âcons, the corresponding operator must commute with the

Hamiltonian Ĥ: d
dt〈Âcons〉 = 〈∂Âcons

∂t 〉 = 0, from which immediately follows [Âcons, Ĥ] = 0.
In a next step the Heisenberg equation shall be applied to the the Pauli Spin operator

~σ from the Pauli equation, i.e., the Schrödinger equation for spin magnetic interaction

ĤΨ(~r, t) =
(
− ~2

2m
~∇2 − µ~σ · ~B(~r, t)

)
Ψ(~r, t) = i~

∂

∂t
Ψ(~r, t), (11)

which consists of the neutron kinetic energy and the Zeeman magnetic energy given by
−µ~σ · ~B(~r, t). The equation of motion of the expectation value of the Pauli Spin operator
hence is given by d

dt〈~σ〉 = µ
i~〈[~σ, ~σ · ~B]〉, with the commutator calculated as

−[~σ, ~σ · ~B] = −~σ(~σ · ~B) + (~σ · ~B)~σ

= −σiσjBj + σiBiσj = −(δij11 + iεijkσk)Bj + (δij11 + iεijkσk)Bi

= iεijkσkBj + iεjkiσkBi = 2i(~σ ⊗ ~B) (12)

which gives d
dt〈~σ〉 = µ

i~〈2i~σ × ~B〉 = 2µ
~ 〈~σ × ~B〉 = γ〈~σ × ~B〉, with γ being the gyromagnetic

ratio. For a homogeneous magnetic fields (no spatial dependency) we have 〈~σ × ~B〉 =
〈~σ〉 × 〈 ~B〉 and using the definition of the polarization vector ~P = 〈~σ〉, we finally obtain

d~P (t)

dt
= ~P (t)× γ ~B, (13)

which is the motion of the vector of polarization ~P in an homogeneous external magnetic
field ~B, which is referred to as Larmor precession.

Neutronen Praktikum 16



Magnetic Moment of the Neutron

Appendix III: Neutron Spin in an oscillating magnetic Field

For a combination of a rotating radio-frequency (RF), with a frequency ω, and a static
magnetic field, in a configuration known from nuclear magnetic resonance (NMR), the
magnetic field is denoted as ~Brot(t) = (B1 cos(ωt), B1 sin(ωt), B0)T . The Pauli-Schrödinger
equation for the neutron’s wavefunction is given by

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m

∂

∂x2
− µσ̂xB1 cos(ωt)− µσ̂yB1 sin(ωt)− µσ̂zB0

)
Ψ(x, t), (14)

which is solved with a separation ansatz denoted as Ψ(x, t) = ϕ(x)ψ(t) ≡ ϕ(x)
(
ψ1(t), ψ2(t)

)T
,

where ϕ(x) denotes the neutron’s spatial wave function and ψ(t) the (time dependent)
spinor wave function in matrix notation. This yields

i~
1

ψ(t)

∂

∂t
ψ(t) + (µB1 (σ̂x cos(ωt) + σ̂y sin(ωt)) +µB0σ̂z) = − ~2

2m

1

ϕ(x)

∂2

∂x2
ϕ(x) ≡ C. (15)

Both sides must be equal to a constant given by C, since the left side is only time depending
and the right side only space dependent. The right side (only depending on the coordinate

x), given by
(
∂2

∂x2 + 2m
~2 C

)
ϕ(x) = 0, and its solution is a plane wave given by ϕ(x) = 1√

2π
ei~k~r,

with C = ~2k2

2m .
However the spinor part remains much more complicated, where the equation

i~
1

ψ(t)

∂

∂t
ψ(t) + (µB1 (σ̂x cos(ωt) + σ̂y sin(ωt)) + µB0σ̂z) =

~2k2

2m
, (16)

can be transformed with the substitution ψ(t) = ζ(t) exp
(
− i~k

2

2m t
)

to

i~
∂

∂t
ζ(t) +

(
µB1(σ̂x cos(ωt) + σ̂y sin(ωt)) + µB0σ̂z

)
ζ(t) = 0. (17)

Now σ̂+ and σ̂− are defined as σ̂+ ≡ σ̂x + iσ̂y and σ̂− ≡ σ̂x − iσ̂y, which leads to

i~
∂

∂t
ζ(t) +

(µB1

2
(σ̂+ exp(−iωt) + σ̂− exp(iωt) + µB0σ̂z

)
ζ(t) = 0. (18)

Next a unitary transformation Û(t) is introduced, which transforms the equation in a
system rotating around the z-axis with a frequency of the magnetic field:

ζ(t) = Û(t)ζrot(t) = exp
(
− i

ωt

2
σ̂z
)
ζrot(t), (19)
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yielding

~ω
2
σ̂z exp

(
− i

ωt

2
σ̂z

)
ζrot(t) + i~ exp

(
− i

ωt

2
σ̂z

) ∂
∂t
ζrot(t)

+

{
µB1

2

(
σ̂+ exp(−iωt) exp

(
− i

ωt

2
σ̂z

)
+ σ̂− exp(iωt) exp

(
− i

ωt

2
σ̂z

))
+

µB0 exp
(
− i

ωt

2
σ̂z

)}
ζrot(t) = 0 (20)

When the equation is multiplied with exp
(
iωt2 σ̂z

)
from the left side and the exponential

function is expanded in a power series (with ωt
2 = α) as

eiασ̂z = 11 + iασ̂z +
(iα)2

2!
σ̂2
z +

(iα)3

3!
σ̂3
z + ... (21)

and using σ̂2
i = 11 (with i = x, y, z)

eiασ̂z = 11 + iασ̂z +
(iα)2

2!
11 +

(iα)3

3!
σ̂z + ... =

(
eiα 0
0 e−iα

)
(22)

since

eiα = 11 + iα+
(iα)2

2!
+

(iα)3

3!
+ ... and e−iα = 11− iα+

(iα)2

2!
− (iα)3

3!
+ ... (23)

we get

exp
(

i
ωt

2
σz

)
σz exp

(
− i

ωt

2
σz

)
=

(
eiα 0
0 e−iα

)(
1 0
0 −1

)(
e−iα 0

0 eiα

)
=

(
1 0
0 −1

)
= σz. (24)

In the same manner

exp
(

i
ωt

2
σz

)
σ̂± exp

(
− i

ωt

2
σz

)
= exp

(
± iωt

)
σ̂±. (25)

This leads to the following simpler equation

i~
∂

∂t
ζrot(t) =

(
− ~ω

2
σz −

µB1

2
(σ̂+ + σ̂−)︸ ︷︷ ︸

2σx

−µB0σz

)
ζrot(t), (26)

where the time dependency between the curly brackets has vanished. Now the following
quantities are defined: ω0 = −2µ

~ B0 = −γB0 and ω1 = −γB1, which gives

1

ζrot(t)

∂

∂t
ζrot(t) = − i

2

(
(ω0ω)σ̂z + ω1σ̂x

)
, (27)

where ω is the frequency of the rotating magnetic field, ω0 is related to the guide field B0

and ω1 to the amplitude of the rotating field B1, as introduced above. Integration leads
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to the following equation:

ln ζrot(t)− ln ζrot(0) = − i

2

(
(ω0 − ω)σ̂z + ω1σ̂x

)
t. (28)

Since ζrot(0) = ζ(0) we get ζrot(t) = ζ(0) exp
(
− i

2

(
(ω0 − ω)σ̂z + ω1σ̂x

)
t
)

and in the non
rotating system a solution is calculated as ζ(t) = ζ(0) exp

(
iωt2 σ̂z−

i
2

(
(ω0−ω)σz+ω1σ̂x

)
t
)
.

Using the definition ~α(t) = (ω1t, 0, (ω0 − ω)t)T yields the final solution denoted as

ζ(t) = ζ(0) exp
(
− i

ωt

2
σ̂z
)

exp
(
− i~σ

~α(t)

2

)
, (29)

with for instance ζ(0) = (1, 0)T accounting for an initial polarization pointing in +z-
direction.

So far so good - the problem has been solved theoretically ! However what remains is to
discuss the result and to understand its physical meaning. For this purpose, the second
exponential has to be examined more precisely

exp
(
− i~σ

~α(t)

2

)
= 11− i~σ

~α(t)

2
+

1

2!

(
− i~σ

~α(t)

2

)2
+

1

3!

(
− i~σ

~α(t)

2

)3
+−..., (30)

discussing the linear expressions sequentially, we obtain

~σ
~α(t)

2
=

1

2

(
σ̂xω1t+ σ̂z(ω0 − ω)t) (31)

for the linear term. For the quadratic term, since σ̂xσ̂z + σ̂zσ̂x = 0, we get(
~σ
~α(t)

2

)2
=
(ω1t

2

)2
11 +

((ω0 − ω)t

2

)2
11 =

(~α(t)

2

)2
11. (32)

All together we finally obtain

exp
(

i~σ
~α(t)

2

)
= 11− i~σ

~α(t)

2
− 1

2!

(~α(t)

2

)2
11 +

1

3!
i~σ
~α(t)

2

(~α(t)

2

)2
+−...

= 11 cos
~α(t)

2
− i~σ~α0(t) sin

α(t)

2
, (33)

where we used sin(x) = x−x3/(3!)+x5/(5!)−+... and cos(x) = 1−x2/(2!)+x4/(4!)−+...,
with the time-independent unit-vector calculated as

~α0(t) =
~α(t)

|~α(t)|
= − 1

| ~Beff |
(B1, 0, B0 +

ω

γ
) = −

~Beff

| ~Beff |
, (34)

with |~α(t)| ≡ α(t) = t
√
ω2

1 + (ω0 − ω)2 = γt
√
B2

1 + (B0 + ω
γ )2 ≡ γt| ~Beff |.

In the rotating system, the neutron perceives the effective magnetic field ~Beff .
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In summary, the total wave function of the neutron can be expressed as

Ψ(x, t) = ϕ(x)ψ(t) =
1√
2π

exp
(

ikx− i
ωt

2
σ̂z − i

~k2

2m
t
)(

11 cos
~α(t)

2
− i~σ~α0(t) sin

α(t)

2

)
ψ(0).

(35)

Using ~σ~α0 = −~σ ~Beff

| ~Beff |
= − σ̂xB1+σ̂z(B0+ω/γ)

| ~Beff |
, and assuming the incident beam to be polar-

ized in the z-direction, i.e., ψ0 = (1, 0)T and applying the Pauli matrices σ̂x, σ̂z and the
identity matrix 11 we finally get

Ψ(x, t) =
1√
2π

exp

(
i
(
kx− ~k2

2m
t
))

exp
(
−iωt

2

)(
cos(α(t)

2 ) + i
B0+ω

γ

Beff
sin(α(t)

2 )
)

i exp

(
iωt
2

)
B1
Beff

sin(α(t)
2 )

 , (36)

which for B0 = B1 = 0 yields Ψ(x, t) = 1√
2π

exp
(
ikx − iE~ t

)
(1, 0)T , that is a free particle

of energy E = ~2k2

2m polarized in +z direction ( ~P = ψ∗~σψ = (0, 0, 1)T ).
If the rotating magnetic field has a resonance frequency ω ≡ ωres = ω0 = −γB0 = ωL, the

action of the static field B0 is completely compensated and ~Beff = (B1, 0, B0 + ω/γ)T has
only a x-component. This condition is referred to as frequency resonance. At this point
we would like to consider the z-component of the polarization given by Pz = ψ∗σzψ =

cos2 α(t)
2 +

(Bo+ω/γ)2−B2
1

(Bo+ω/γ)2+B2
1

sin2 α(t)
2 which for frequency resonance reduces to PFreq Res

z =

cos2 α(t)
2 − sin2 α(t)

2 = cos(ω1t). So if in addition the amplitude resonance for B1,
namely t = τ : α(t) = γτB1 = −π → B1 = π~

2τ |µ| , with τ = L/v being is the transmission
time through the dynamical spin flipper with a flipper length L, depending on the velocity
v of the neutron, is fulfilled we get PFreq,Ampl Res

z = (0, 0,−1); a spin flip occurred ! If we
now calculate the wave function after the spin flip we get

Ψ(τ) =
1√
2
ei(kx−E/~ t)

(
0

ieiωres/2

)
= −i

1√
2
ei(kx−(E−|µ|B0)/~ t)

(
0
1

)
, (37)

with ~P = ψ∗~σψ = (0, 0,−1)T , that is polarization in −z-direction. One can immediately
see that compared to the total energy before the spin flipp, given by E0+|µ|B0 the neutron
hast lost an amount of energy ∆E = 2|µ|B0 = ~ωres, by emission of a photon of frequency
ν = ωres/(2π). In case of a flip from (0, 1)T to (1, 0)T the neutron absorbs an photon of
the same energy from the rf-field.

For a oscillating field with phase of form ~B(t) =

 B1 sin(ωt+ φ)
B1 cos(ωt+ φ)

B0

 the effective field

in frequency resonance reads ~Beff =

 B1 sin(φ)
B1 cos(φ)

0

 .

However, in practice an oscillating field is used instead of a rotating one (though it is
in principle feasible to implement a rotating filed). An oscillating field of frequency ω
plus static magnetic guide field, denoted as ~Bosc(t) = (0, Bosc

1 cos(ωt + φ), B0)T , can be
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Figure 16: Graphical representation of an oscillating magnetic field decomposed in two
counterrotating fields. Each of the rotating fields has half amplitude compared to the
oscillating field.

decomposed as the sum of two counter-rotating fields with frequencies ω:

~Bosz =

 0
By cos(ωt)

B0

 = ~Bosz = ~B1 rot + ~B2 rot

=

 By
2 sin(ωt+ φ)
By
2 cos(ωt+ φ)

B0
2

+

 By
2 sin(−ωt+ φ)
By
2 cos(ωt+ φ)

B0
2

 . (38)

The interaction representation used above describes the physics in a rotating frame with
the field component ? with the Larmor precession of the spin in the static field. The
other component is seen in this frame as a fast rotating field (2ω), whose effect can be
neglected, which is referred to as rotating wave approximation (RWA). A consequence of
the rotating wave approximation is the so called Bloch Siegert shift, which originates from
the second term 2. In 1940 Bloch and Siegert proved that the dropped part, oscillating
rapidly, can give rise to a shift in the true resonance frequency such that ωres 6= ωL. Now

the frequency resonance is given by ωres = 2|µ|
~

(
1 +

B2
1

16B2
0

)
and the amplitude becomes

Bosc
1 (t) = 2Brot

1 (t) = π~
τ |µ| .
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